EXHIBIT / FOOT NOTE 18 Independent Expert Engineering Investigation and Review Panel # Report on Mount Polley Tailings Storage Facility Breach #### 5 | Panel Observations Rather, the design was based exclusively on ESA in various forms using peak and residual strengths, all of which neglected pore pressures that would develop in normally consolidated GLU during rapid, undrained shearing. The design never incorporated an undrained strength analysis (USA), except in one instance. A USA performed for Stage 6 using an undrained strength typical of normally consolidated clays produced a factor of safety of only 1.1. But this was not seen to be the operative strength and was not considered further here or in subsequent stages. If undrained strength behaviour had been properly understood and applied throughout, the outcome could have been much different. The Observational Method was invoked early on as the basis for design. This commonly accepted approach uses observed performance from instrumentation data for implementing preplanned design features or actions in response. But there were a number of problems in applying this strategy to the Mount Polley dam that are treated in the following section. The first was simple geometry. The Observational Method relies on measuring the right things in the right places. While this was comparatively easy over the 1,000 m length of the Stage 1 dam, it became increasingly difficult as the length grew to 5 kilometres (km) by Stage 9. Nor could foundation instrumentation be installed beneath the dam crest and slopes where piezometric data mattered most. The slopes were too steep to be accessible, and few instruments installed on the crest could survive the near-constant construction there for very long. As a result, the few piezometers and inclinometers at the Perimeter Embankment were too far beyond the dam toe to produce critical data, and too far between to cover the area where the breach occurred. Even more fundamentally, the piezometers as installed were only capable of measuring static ("water table") pore pressures and, if properly located, those induced by applied loads. But piezometers cannot measure pore pressures induced by undrained shearing because the location of the failure surface on which to measure them cannot be known in advance. The remaining problem is that the Observational Method is useless without a way to respond to the observations. Constructing buttresses and obtaining the necessary mine waste had been hard enough under ordinary circumstances. Were the instruments to warn somehow of a rapidly developing failure, there would be no way to respond in time to avert it. Hence, the Observational Method could not be relied on to determine the need for buttressing, so the buttress would be required regardless. This fact was belatedly recognized in the Stage 10 design just days before the breach—the final fateful instance of too little, too late. ### 15 | Collected Technical References #### **APPENDICES REFERENCES:** BC Government Ministry of Energy and Mines, BC Geology Map, (http://www.empr.gov.bc.ca/Mining/Geoscience/Publications Catalogue/Maps/GeoscienceMaps/Documents/GM2010-1/GM2010-1.pdf). BC Government Ministry of Energy and Mines, Regional Geology of the Mount Polley Area, Central British Columbia, (http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/Maps/GeoscienceMaps/Documents/GM2007-01_Mount_Polley.pdf). Becker, D.E., Crooks, J.H.A., Been, K., and Jeffries, M.G., (1987) Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal, 24(4):549-564. Burlingame, M.J. et al., 2013, Folding, Destructuring, and Strength Changes in Overconsolidated Varved Clay under Embankment Loading, ASCE *Journal and Geotechnical and Environmental Engineering*, Vol. 139, pp. 1738–1744. Butterfield, R. (1979) A natural compression law for soils. Geotechnique, 29(4): 469-480. Casagrande, A. (1936) The determination of pre-consolidation load and its practical significance. In Casagrande, A., Rutledge, P.C., and Watson, J.D. (Eds.), Proceedings 1st International Conference on Soil Mechanics and Foundation Engineering, American Society of Civil Engineers, 3:60-64. Clague, J., (1987) Quaternary Stratigraphy and History, Williams Lake, British Columbia; *Canadian Journal of Earth Science*, Volume 24, pp. 147-158. Davies, M.P., Martin, T. and Lighthall, P., 2000. Mine tailings dams: when things go wrong. Proc. Tailings Dams 2000, pp. 261-273, Association of State Dam Safety Officials, Lexington Kentucky. www.infomine.com/library/publications/docs/Davies2002d.pdf. Davies, M.P., McRoberts, E.C. and Martin, T.E., 2002. Static liquefaction of tailings – fundamentals and case histories. Proc. Tailings Dams 2002, Association of State Dam Safety Officials, Lexington Kentucky. www.infomine.com/library/publications/docs/Davies2002c.pdf. Falk, J.A., Abt, S.R. and Nelson, J.D., 1985, Prediction of gully incision on reclaimed tailings slopes. U.S. Nuclear regulatory Commission, Report no. CER85-86JAF-JDN6, Washington, DC, 76 p. Howard, A.D., 1997, Badland morphology and evolution: interpretation using a simulation model, Earth Surface Processes and Landforms, v. 22, pp. 211-227. ICOLD, 2001, Bulletin 121, Tailings dams risk of dangerous occurrences. International Commission on Large Dams, Paris, 144 p. ICOLD, 2001, Bulletin 121, Tailings dams risk of dangerous occurrences. International Commission on Large Dams, Paris, incident 188. ICOLD, 2001, Bulletin 121, Tailings dams risk of dangerous occurrences. International Commission on Large Dams, Paris, incident 196. Kulhawy, F.H. and Mayne, P.W., 1990, "Manual on Estimating Soil Properties for Foundation Design", Electric Power Research Institute (EPRI), EL-6800, 308 p. McAndless, P. and Taylor, C., 2005, Surficial Geology of the Mount Polley Property: Summary of 2005 Exploration Work. Imperial Metals Corporation. Reagan, R., Mosteller, F. and Youtz, C., 1989, Quantitative meanings of verbal probability expressions. J. *Applied Psychology*, v. 74, no. 3, pp. 433-442. Rico, M., Benito, G. and Diez-Herrero, A., 2007, Floods from tailings dam failures, *Journal Hazardous Materials*, v. 154, no. 1-3, pp. 79-87. Schumm, S.A., 1956, Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Bull. Geological Society of America, v. 67, no. 5, pp. 597-646. Teh, C.I. and Houlsby, G.T., 1991, "An analytical study of the cone penetration test in clay", *Geotechnique* 41, No. 1, pp. 17-34. USCOLD, 1994, Tailings Dam Incidents, U.S. Society on Dams (formerly U.S. Committee on Large Dams), Denver, 82 p. Vestad, H., 1976, Viddalsvatn Dam, a history of leakages and investigations, 12th Congress on Large Dams, pp. 369-389, International Commission on Large Dams (ICOLD), Paris. Vick, S.G., 1991, Inundation risk from tailings flow failures, IX Panamerican Conf. on Soil Mechanics and Foundation Engineering, pp. 1137-1158, Sociedad Chilena de Geotecnia, Santiago. Vick, S.G., 1991, Planning, Design, and Analysis of Tailings Dams, Bi Tech Publishers, Vancouver, 369 p. von Thun, J.L., 1985, Application of statistical data from dam failures and accidents to risk-based decision analysis on existing dams. U.S. Bureau of Reclamation Engineering and Research Center, Denver, 38 p. WISE Uranium Project, http://www.wise-uranium.org/mdaf.html.